Rivlin's Theorem on Walsh Equiconvergence

Н. Р. Dікsніт*

Department of Mathematics, University of Jabalpur, Jabalpur (M.P.), India

A. SHARMA

Department of Mathematics, University of Alberta, Edmonton (T6G 2G1) Alberta, Canada

V. SINGH*

Department of Mathematics, University of Patiala, Patiala, India

AND

F. STENGER

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

Communicated by T. J. Rivlin

Received July 30, 1985

1. INTRODUCTION

Recently Rivlin [2] has given a very interesting extension of Walsh's theorem on equiconvergence. Let C denote the complex plane, and let $\mathscr{A}(D(\rho)), 1 < \rho < \infty$, be the class of functions f that are analytic on the disc $D(\rho) = \{z \in C: |z| < \rho\}$ and have a singularity on the circle $\{z \in C: |z| = \rho\}$. If $f(z) = \sum_{0}^{\infty} a_{j} z^{j}$, we denote by $S_{n}(f; z)$ the partial sum $\sum_{0}^{n} a_{j} z^{j}$. For a positive integer m = nq + c, where q, c are fixed integers, let $\omega = e^{2\pi i/m}$. If π_{n} denotes the family of all polynomials of degree $\leq n$ and if $p_{n,m}(f; z)$ denotes such a polynomial minimizing

$$\sum_{k=0}^{m-1} |f(\omega^k) - q_n(\omega^k)|^2$$
(1.1)

over all polynomials $q_n \in \Pi_n$, then Rivlin proved

* These two authors would like to acknowledge support from NSERC 3094 while this research was in progress.

DIKSHIT ET AL.

THEOREM A. Let $f \in \mathcal{A}(D(\rho))$ and let q be a fixed positive integer. Then

$$\lim_{n \to \infty} (p_{n,m}(f;z) - S_n(f;z)) = 0,$$
(1.2)

for all $z \in D(\rho^{1+q})$, the convergence being uniform and geometric in $|z| \leq \tau < \rho^{1+q}$, where m = nq + c, c a fixed integer. Moreover, the result is best possible in the sense that (1.2) fails for every z satisfying $|z| = \rho^{1+q}$ for some $f \in \mathcal{A}(D(\rho))$.

When m = n + 1, Theorem A reduces to a well-known theorem of J. L. Walsh [5, 4].

Rivlin gave another extension of Walsh's theorem for functions analytic in the ellipse $\mathscr{E}(\rho)$ in C which is the image of the disc $D(\rho)$ under the mapping $z = \frac{1}{2}(w + w^{-1})$. Let $\mathscr{A}(\mathscr{E}(\rho))$ denote the class of functions f that are analytic on $\mathscr{E}(\rho)$ but not on any region containing the closure of $\mathscr{E}(\rho)$. Let

$$f(z) = \sum_{0}^{\infty} A_{k} T_{k}(z), \qquad (1.3)$$

where $T_k(z)$ is the Chebyshev polynomial of degree k and where the prime means that the first term in Eq. (1.3) is to be halved. Let $\xi_j^{(m)}$ (j=1,...,m)be the zeros of $T_m(x)$ (i.e., $\xi_j^{(m)} = \cos[(2j-1)\pi/2m], j=1,...,m)$, and let $u_{n,m}(f;z)$ denote the algebraic polynomial which minimizes

$$\sum_{j=1}^{m} |f(\xi_j^{(m)}) - p_n(\xi_j^{(m)})|^2$$
(1.4)

over all polynomials $p_n \in \Pi_n$. If $S_n(f; z) = \sum_{k=0}^{n} A_k T_k(z)$, then Rivlin proved

THEOREM B [2]. If $f \in \mathscr{A}(\mathscr{E}(\rho))$ and q is any integer >1, then

$$\lim_{n \to \infty} (u_{n,m}(f;z) - S_n(f;z)) = 0, \qquad m = nq + c$$
(1.5)

for all z in $\mathscr{E}(\rho^{2q-1})$, the convergence being uniform and geometric on $\mathscr{E}(\tau)$ for $\tau < \rho^{2q-1}$.

In addition, Rivlin also showed that Theorem B is also true if we replace $u_{n,m}(f; z)$ by the polynomial $t_{n,m}(f; z)$ which minimizes

$$\sum_{k=1}^{m} |f(\eta_k^{(m)}) - p_n(\eta_k^{(m)})|^2, \qquad (1.6)$$

where $\eta_k^{(m)}$ (k = 1, ..., m) are the extrema of $T_n(x)$ on [-1, 1].

The method of Rivlin is based on the properties of Chebyshev polynomials and their zeros. This makes a further extension of his results difficult. Our purpose here is to propose a mixed problem of interpolation and l_2 -approximation and to extend Rivlin's result in two directions. As a special case we obtain "help" functions which give larger regions of equiconvergence as in [1].

In Section 2 we state the problem and the main results in Theorems 1 and 2. Section 3 deals with the proof of Theorem 1, and the proof of Theorem 2 is given in Section 4.

2. PRELIMINARIES AND MAIN RESULT

Let $A(\rho)$ denote the ring $\{z \in C: \rho^{-1} < |z| < \rho\}, \rho > 1$, and let $\mathscr{A}(A(\rho))$ denote the class of functions f which are analytic on $A(\rho)$ but not on any region containing the closure of $A(\rho)$. Let us set

$$f(z) = \sum_{-\infty}^{\infty} a_j z^j, \qquad z \in A(\rho).$$
(2.1)

We shall consider the following two problems:

Problem A. For given $f \in \mathscr{A}(A(\rho))$, find the polynomial P_{rm+n} defined by

$$P_{rm+n}(z) = P_{rm+n}(f;z) = \sum_{-rm+n}^{rm+n} c_{\nu} z^{\nu}$$
(2.2)

which satisfies

$$[P_{rm+n}^{(\nu)}(\omega^k) - f^{(\nu)}(\omega^k)] = 0 \qquad (\nu = 0, 1, ..., r-1, k = 0, 1, ..., 2m-1), (2.3)$$

where $\omega^{2m} = 1$, and which minimizes

$$\sum_{k=0}^{2m-1} |P_{rm+n}^{(r)}(\omega^k) - f^{(r)}(\omega_k)|^2, \qquad (2.4)$$

over all polynomials of the form (2.2) which satisfy (2.3).

Problem B. Find the region where the difference

$$P_{rm+n}(f;z) - S_{rm+n}(f;z)$$
(2.5)

tends to zero as $n \to \infty$, when m = nq + c, where c and q are positive integer constants, and where

$$S_{rm+n}(f;z) = \sum_{-rm-n}^{rm+n} a_j z^j$$
(2.6)

is a section of the Laurent series (2.1) of f.

The solution to Problem A is given by

THEOREM 1. The polynomial $P_{rm+n}(f; z)$ of the form (2.2) which satisfies (2.3) and minimizes (2.4) is given by

$$P_{rm+n}(f;z) = \frac{1}{2\pi i} \int_{C_R} f(t) t^{rm+n} K_1(t,z) dt, \qquad (2.7)$$

where

$$z^{rm+n}K_{1}(t, z)(t-z) = 1 - \left(\frac{z^{2m}-1}{t^{2m}-1}\right)^{r} + \frac{(z^{2m}-1)^{r}}{(t^{2m}-1)^{r+1}}t^{2m-2n-1}(t^{2n+1}-z^{2n+1}), \quad (2.8)$$

and C_R is the oriented boundary of the ring A(R).

We postpone the proof of Theorem 1 to Section 3 and proceed to state our main result.

THEOREM 2. If $f \in \mathcal{A}(A(\rho))$, f(z) = f(1/z) for all $z \in A(\rho)$ and $P_{rm+n}(f; z)$ is the solution to Problem A, and if m = nq + c, where n, q, and c are positive integers, then

$$\lim_{n \to \infty} [P_{rm+n}(f;z) - S_{rm+n}(f;z)] = 0,$$
(2.9)

for all $z \in A(\tau(\rho))$, where

$$\begin{aligned} \mathbf{r}(\rho) &= \rho^{2q-1}, & \text{when } r = 0 \\ &= \min\{\rho^{1+(2q-2)/(qr+1)}, \rho^{1+2/(qr-1)}\}, & \text{when } r \ge 1. \end{aligned}$$
(2.10)

Moreover, the convergence is uniform and geometric in any compact subset of the above ring. Also the result is best possible in the sense that (2.9) fails for every z on the boundary of $A(\tau(\rho))$ for some $f \in \mathcal{A}(A(\rho))$.

Remark. Problems A and B can also be formulated and solved in a similar way if instead of considering the minimization problem (2.4) on the zeros of $z^{2m} = 1$, we consider the same problem on the zeros of $z^{2m} = -1$. In this case, ω^k in (2.4) is replaced by $\omega^{k-1/2}$ and the corresponding polynomial $\tilde{P}_{rm+n}(f; z)$, which satisfies (2.3) and (2.4) on the zeros of $z^{2m} = -1$, is given by

$$\frac{1}{2\pi i}\int_{C_R}f(t)\ t^{rm+n}\widetilde{K}_1(t,z)\ dt.$$

Here $\tilde{K}_1(t, z)$ is obtained from (2.8) by replacing $z^{2m} - 1$ and $t^{2m} - 1$ in (2.8) by $z^{2m} + 1$ and $t^{2m} + 1$, respectively. Also, Theorem 2 holds when $\tilde{P}_{rm+n}(f; z)$ replaces $P_{rm+n}(f; z)$.

When r = 0, Theorem A gives the polynomials $t_{n,m}(f; z)$ and $u_{n,m}(f; z)$ of Rivlin [2] according as we use the zeros of $z^{2m} + 1$ or of $z^{2m} - 1$ respectively in (2.3) and (2.4).

3. PROOF OF THEOREM 1

Since $P_{rm+n}(f; z)$ is of the form (2.2) and satisfies (2.3), we have

$$z^{rm+n}P_{rm+n}(f;z) = Q_{2rm-1}(z) + (z^{2m}-1)^r R_{2n}(z), \qquad (3.1)$$

where $R_{2n}(z) \in \Pi_{2n}$. From (2.3), we require that

$$\left[Q_{2rm-1}(z) \, z^{-rm-n}\right]_{z=\omega^{k}}^{(\nu)} = f^{(\nu)}(\omega_{k}) \quad (\nu=0,\,1,\,...,\,r-1,\,k=0,\,1,\,...,\,2m-1).$$

Equivalently, we require

$$Q_{2mr-1}^{(v)}(\omega^{k}) = [z^{rm+n}f(z)]_{z=\omega^{k}}^{(v)}.$$

From a known formula [1], we have

$$Q_{2mr-1}(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(t) t^{rm+n}}{t-z} \left\{ 1 - \left(\frac{z^{2m}-1}{t^{2m}-1}\right)^r \right\} dt.$$
(3.2)

In order to find $P_{rm+n}^{(r)}(\omega^k)$, we need to evaluate

 $A_1 := [Q_{2rm-1}(z) z^{-rm-n}]_{\omega^k}^{(v)} \text{ and } A_2 := [(z^{2m}-1)^r R_{2n}(z) z^{-rm-n}]_{\omega^k}^{(v)}.$ Since

$$\left[\frac{d^r}{dz^r}(z^{2m}-1)^r\right]_{\omega^k}=r!(2m)^r\,\omega^{-kr},$$

it is easy to see that

$$A_2 = r! (2m)^r \, \omega^{-kr} R_{2n}(\omega^k) \, \omega^{-k(rm+n)} \qquad (k = 0, 1, ..., 2m-1). \tag{3.3}$$

Also from (3.1) and (3.2), we have

$$A_{1} = \left[z^{-rm-n} \frac{1}{2\pi i} \int_{C_{R}} \frac{f(t) t^{rm+n}}{t-z} dt \right]_{\omega^{k}}^{(r)}$$
$$- \frac{1}{2\pi i} \int_{C_{R}} \frac{f(t) t^{rm+n}}{(t^{2m}-1)^{r}} \left[\frac{(z^{2m}-1)^{r} z^{-rm-n}}{t-z} \right]_{z=\omega^{k}}^{(r)} dt$$
$$= f^{(r)}(\omega^{k}) - \frac{r!(2m)^{r}}{2\pi i} \omega^{-k(rm+n+r)} \int_{C_{R}} \frac{f(t) t^{rm+n}}{(t^{2m}-1)^{r}(t-\omega^{k})} dt.$$
(3.4)

From (3.3) and (3.4), the problem of minimizing (2.4) reduces to minimizing

$$\sum_{k=0}^{2m-1} |R_{2n}(\omega^k) - g(\omega^k)|^2$$
(3.5)

over all polynomials $R_{2n} \in \pi_{2n}$, where

$$g(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(t) t^{rm+n}}{(t^{2m}-1)^r (t-z)} dt.$$

In order to minimize (3.5), we replace g(z) by its Lagrange interpolant on the 2m roots of unity and use a result of Rivlin [2]. Accordingly, the Lagrange interpolant of g(z) is

$$L_{2m-1}(z; g) = \frac{1}{2\pi i} \int_{C_R} \frac{f(t) t^{rm+n} (t^{2m} - z^{2m})}{(t^{2m} - 1)^{r+1} (t-z)} dt.$$

If $s_{2n}(z; L_{2m-1})$ denotes the Taylor polynomial of degree 2n for $L_{2m-1}(z; g)$, the result of Rivlin yields

$$R_{2n}(z) = s_{2n}(z; L_{2m-1}(z; g))$$

= $\frac{1}{2\pi i} \int_{C_R} \frac{f(t) t^{mr+2m-n-1}(t^{2n+1}-z^{2n+1})}{(t^{2m}-1)^{r+1}(t-z)} dt.$ (3.6)

The formula (2.7) is obtained now on using (3.1), (3.2), and (3.6).

COROLLARY 1. If $f \in \mathcal{A}(A(\rho))$ and if moreover $f(z) = f(z^{-1})$ for all $z \in A(\rho)$, then

$$z^{rm+n}P_{rm+n}(f;z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t} \left\{ t^{rm+n+1}K_1(t,z) - \left(\frac{1}{t}\right)^{rm+n+1}K_1\left(\frac{1}{t},z\right) \right\} dt,$$
(3.7)

where Γ is the circle |z| = R, $1 < R < \rho$.

Proof. Since C_R is the union of the circles |z| = R and $|z| = R^{-1}$, a change of variable in the integral on $|z| = R^{-1}$ gives the result after an elementary calculation, because $f(t) = f(t^{-1})$.

Remark. We remark that when r = 0, $P_n(f; z)$ is the polynomial $t_{n,m}(z; f)$ of Rivlin [2].

Also from (2.6), we see that if $f(t) = f(t^{-1})$, then

$$z^{rm+n}S_{rm+n}(f;z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t} K_0(t,z) dt, \qquad (3.8)$$

344

where

$$K_0(t,z) = \left(\frac{z}{t}\right)^{rm+n} \frac{z^{rm+n+1} - t^{rm+n+1}}{z-t} + \frac{1}{t} \frac{z^{rm+n} - (1/t)^{rm+n}}{z-(1/t)}.$$
 (3.9)

This follows also from the representation of f(z), viz.,

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t} \left[\frac{t}{t-z} - \frac{t^{-1}}{t^{-1}-z} \right] dt, \qquad (3.10)$$

when $f(z) = f(z^{-1})$.

COROLLARY 2. If $f \in \mathscr{A}(A(\rho))$ and if moreover $f(z) = f(z^{-1})$ for all $z \in A(\rho)$, then

$$P_{rm+n}(f;z) = P_{rm+n}(f;z^{-1}).$$
(3.11)

Proof. From (2.7) and (2.8), we have

$$z^{rm+n}P_{rm+n}(f;z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(t) t^{rm+n}}{t-z} \times \left[1 + \frac{(z^{2m}-1)(1-t^{2m-2n-1}z^{2n+1})}{(t^{2m}-1)^{r+1}} \right] dt$$

and

$$\left(\frac{1}{z}\right)^{rm+n} P_{rm+n}(f; z^{-1}) = \frac{1}{2\pi i} \int_{C_R} \frac{f(t) t^{rm+n}}{t-z^{-1}} \\ \times \left[1 + \frac{(1-z^{2m})^r z^{-2mr}}{(t^{2m}-1)^{r+1}} \left(1 - \frac{t^{2m-2n-1}}{z^{2n+1}}\right)\right] dt.$$

Changing t into t^{-1} in the above and simplifying, we have

$$P_{rm+n}(f; z^{-1}) = \frac{1}{2\pi i} \int_{C_R} \left(\frac{z}{t}\right)^{rm+n+1} \\ \times \left[1 - \frac{(z^{2m}-1)^r z^{-2m(r+1)}}{(t^{2m}-1)^{r+1} z^{2mr}} \left(1 - \frac{z^{-2n-1}}{t^{2m-2n-1}}\right)\right] dt.$$

From these we obtain after simplifying that

$$P_{rm+n}(f;z) - P_{rm+n}(f;z^{-1}) = \frac{1}{2\pi i} \int_{C_R} \frac{f(t)}{t-z} \left[\left(\frac{t}{z}\right)^{rm+n} - \left(\frac{z}{t}\right)^{rm+n} \right] dt = 0,$$

because the integrand is single-valued analytic in the annulus C_R .

DIKSHIT ET AL.

4. Some Lemmas and Proof of Theorem 2

The proof of Theorem 2 will require a number of estimates and to this effect we prove

LEMMA 1. If f(z) satisfies the conditions of Theorem 2, then we have

$$P_{rm+n}(f;z) - S_{rm+n}(f;z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t} \Lambda(t,z) dt, \qquad (4.1)$$

where $\Lambda(t, z)$ is given by

$$\Lambda(t, z) = S_1(t, z) + S_2(t, z) + S_3(t, z) - S_2(t^{-1}, z) - S_3(t^{-1}, z)$$
(4.2)

and

$$S_{1}(t, z) = -\frac{(t^{2mr+2n+1} - z^{2mr+2n+1})}{(t-z)(tz)^{rm+n}},$$

$$S_{2}(t, z) = \frac{t^{mr+n+1}\{(t^{2m}-1)^{r} - (z^{2m}-1)^{r}\}}{(t^{2m}-1)^{r}(t-z)z^{rm+n}},$$

$$S_{3}(t, z) = \frac{(z^{2m}-1)^{r}t^{mr+2m-n}(t^{2n+1}-z^{2n+1})}{(t^{2m}-1)^{r+1}(t-z)z^{rm+n}}.$$
(4.3)

Proof. These formulae are obtained from (3.7) and (3.8) and on adding the integral

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(t)}{t} \left\{ \frac{z^{rm+n} - t^{rm+n}}{t-z} + \frac{1}{t} \frac{z^{rm+n} - (1/t)^{rm+n}}{z-t^{-1}} \right\} dt$$

to the right side of (3.7), since it is easily seen to be zero when f(t) = f(1/t).

LEMMA 2. The following identity holds:

$$\frac{(t^{2m}-1)^r - (z^{2m}-1)^r}{t-z} = \sum_{k=0}^{2mr-1} z^k t^{-k-1} A_k(t), \tag{4.4}$$

where $A_k(t)$ is a polynomial such that

$$A_{2m\nu}(t) = A_{2m\nu+1}(t) = \dots = A_{2m(\nu+1)-1}(t)$$

= $(t^{2m}-1)^r - \sum_{j=0}^{\nu} (-1)^{r-j} {r \choose j} t^{2mj}$
= $\sum_{j=\nu+1}^{r} (-1)^{r-j} {r \choose j} t^{2mj}$ ($\nu = 0, 1, ..., r-1$). (4.5)

This is easily verified. When r = 0, $A_k(t)$'s are all zero, and when r = 1, $A_k(t) = t^{2m}$.

LEMMA 3. If we set

$$\Lambda(t, z) = \sum_{j=-mr-n}^{mr+n} \lambda_j(t) z^j, \qquad (4.6)$$

then
$$\lambda_{j}(t) = \lambda_{-j}(t), j = 1, 2, ..., rm + n, and for |t| = R (1 < R < \rho), we have$$

 $\lambda_{|j|}(t) = O(R^{-mr - n - 1}), \qquad m(r - 2\lambda - 2) + n + 1 \le |j| \le m(r - 2\lambda) - n - 1$
 $= O(R^{-mr - 2m + n}), \qquad \max(0, m(r - 2\lambda) - n) \le |j| \le m(r - 2\lambda) + n.$
(4.7)

The proof of this lemma depends on Lemma 2 and (4.3). The estimates (4.7) can be used to prove Theorem 2, but we provide here a simple proof.

Proof of Theorem 2. Set $A := S_1(t, z) + S_2(t, z) + S_3(t, z)$. Then from (4.3) we obtain

$$A = \frac{z^{mr+n+1}}{(t-z) t^{mr+n}} - \frac{(1-z^{-2m})^r}{(1-t^{-2m})^{r+1}} \frac{z^{mr-n}}{t^{mr+2m-n-1}} \frac{(-1+z^{2n+1}t^{2m-2n-1})^r}{(t-z)}$$
$$= \frac{1}{t-z} \left[\frac{z^{mr+n+1}}{t^{mr+n}} + \frac{z^{mr-n}(1-z^{-2m})^r}{t^{mr+2m-n-1}(1-t^{-2m})^{r+1}} - \frac{z^{mr+n+1}}{t^{mr+n}} \frac{(1-z^{-2m})^r}{(1-t^{-2m})^{r+1}} \right]$$
$$= \frac{1}{t-z} \left[\frac{z^{mr+n+1}}{t^{mr+n}} \left\{ O(z^{-2m}) + O(t^{-2m}) \right\} + \frac{z^{mr-n}}{t^{mr+2m-n-1}} \left\{ 1 + O(z^{-2m}) + O(t^{-2m}) \right\} \right],$$

where we may assume without loss of generality that |z| > 1, |t| > 1. Moreover, we observe that if we set $B := S_1(1/t, z) + S_3(1/t, z)$, then using (4.3) again we see that

$$B = \frac{t^{-mr-n-1}\left\{(t^{-2m}-1)^r - (z^{2m}-1)^r\right\}}{(t^{-2m}-1)^r(t^{-1}-z)z^{mr+n}} + \frac{(z^{2m}-1)^r}{(t^{-2m}-1)^{r+1}}\frac{t^{-mr-2m+n}(t^{-2n-1}-z^{2n+1})}{(t^{-1}-z)z^{mr+n}}.$$

347

Some simplification yields

$$B = \frac{1}{1 - tz} \left[\frac{1}{(tz)^{rm+n}} - \frac{(-1)^r z^{mr-n}}{t^{mr+n}} \left(1 + O(z^{-2m}) + O(t^{-2m}) \right) + \frac{(-1)^r z^{mr+n+1}}{t^{mr+2m-n-1}} \left(1 + O(z^{-2m}) + O(t^{-2m}) \right) \right].$$

From the above estimates for A and B we see that as $n \to \infty$,

$$A = O\left(\frac{z^{mr+n}}{t^{mr+n+2m}}\right) + O\left(\frac{z^{mr-n}}{t^{mr+2m-n-1}}\right)$$

and

$$B = O\left(\frac{z^{mr-n}}{t^{mr+n}}\right) + O\left(\frac{z^{mr+n+1}}{t^{mr+2m-n-1}}\right).$$

Thus we have

$$\Lambda(t, z) = O\left(\frac{z^{mr-n}}{t^{mr+n}}\right) + O\left(\frac{z^{mr+n+1}}{t^{mr+2m-m-1}}\right),$$
(4.8)

which tends to zero if

$$|z| < \min\{\rho^{(mr+n)/(mr-n)}, \rho^{(mr+2m-n-1)/(mr+n+1)}\}$$

This gives the result when $n \to \infty$ and completes the proof for r > 1.

For r = 0, $S_2(t, z)$ and $S_2(1/t, z)$ do not occur and the estimate in Theorem 2 is easily obtained from (4.8), since in this case $\Lambda(t, z) = O(z^{n+1}/t^{2m-n-1})$.

Remark. For r = 0, the polynomial $P_n(z)$ in Theorem 1 can be easily seen to be the polynomial $t_{n,m(n)}(z, f)$ of Rivlin [2]. In fact we can see from (2.7) and (2.8) that

$$P_n(z) = t_{n,m(n)}(z,f) = \sum_{j=0}^{n'} T_j(z) \frac{1}{2\pi i} \int_{\Gamma} f(t) \left(\frac{t^{2m-j-1}}{t^{2m}-1} + \frac{t^{j-1}}{t^{2m}-1} \right) dt.$$

If we set

$$s_{n,\nu}(z,f) = \sum_{j=0}^{n'} (A_{2\nu m+j} + A_{2\nu m-j}) T_j(z) \qquad (\nu = 1, 2, 3, ...),$$

where f(z) is given by (1.3), then

$$\lim_{n \to \infty} t_{n,m}(z;f) - s_n(z;f) - \sum_{\nu=1}^{l-1} s_{n,\nu}(z;f) = 0$$
(4.9)

for $|z| < \rho^{2lq-1}$.

Theorems 1 and 2 can be formulated for functions in $\mathcal{A}(A(\rho))$ and an analogue of (4.9) can also be obtained from the representation (4.1).

It would be interesting to obtain sharpness results analogous to those of Saff and Varga [3] and the analogue of Theorem 2 above when Hermite interpolation is replaced by lacunary interpolation as in [6].

REFERENCES

- 1. A. S. CAVARETTA, JR., A. SHARMA, AND R. S. VARGA, Interpolation in the roots of unity: An extension of a theorem of J. L. Walsh, *Resultate Math.* 3 (1980), 155–191.
- 2. T. J. RIVLIN, On Walsh equiconvergence, J. Approx. Theory 36 (1982), 334-345.
- 3. E. B. SAFF AND R. S. VARGA, A note on the sharpness of J. L. Walsh's theorem and its extensions for interpolation in the roots of unity, *Acta Math. Hungar.* 41 (1983), 371–377.
- 4. R. S. VARGA, Topics in polynomial and rational interpolation and approximation, in "Séminaire de Math. Supérieures 81," Chap. IV, Univ. Montreal, Montreal, Canada, 1982.
- J. L. WALSH, "Interpolation and Approximation by Rational Functions," Amer. Math. Soc. Colloq. Publ., Vol. XX, 5th ed., Amer. Math. Soc., Providence, RI, 1969.
- 6. R. B. SAXENA, A. SHARMA, AND Z. ZIEGLER, Hermite-Birkhoff interpolation on roots of unity and Walsh equiconvergence, J. Linear Algebra Appl. 52/53 (1983), 603-615.