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I. INTRODUCTION

Recently Rivlin [2] has given a very interesting extension of Walsh's
theorem on equiconvergence. Let C denote the complex plane, and let
sd(D(p )), 1 < P < 00, be the class of functions f that are analytic on the disc
D(p)= {ZEC: Izi <p} and have a singularity on the circle {ZEC: Izi =p}.
If f(z) = Lac ajzJ, we denote by Sn(f; z) the partial sum La ajz j. For a
positive integer m = nq + c, where q, c are fixed integers, let w = e21Ci

/
m. If Ten

denotes the family of all polynomials of degree ~n and if Pn.m(f; z) denotes
such a polynomial minimizing

m-l

I If(wk)-qn(wkW
k~O

over all polynomials qn E JI", then Rivlin proved

(1.1 )
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THEOREM A. Let f E d(D(p)) and let q be a fixed positive integer. Then

lim (Pn,m(f; z) - Sn(f; z)) = 0,
n --+ oc

(1.2 )

for all zED(pl+q), the convergence being uniform and geometric in Izi ~
r < pI +q, where m = nq + c, c a fixed integer. Moreover, the result is best
possible in the sense that (1.2) fails for every z satisfying Izi = pi + qfor some
fEd(D(p)).

When m = n + 1, Theorem A reduces to a well-known theorem of J. L.
Walsh [5,4].

Rivlin gave another extension of Walsh's theorem for functions analytic
in the ellipse lff(p) in C which is the image of the disc D(p) under the map
ping z = !(w + w- I). Let .91(lff(p )) denote the class of functions f that are
analytic on lff(p) but not on any region containing the closure of lff(p). Let

UJ

f(z) = I' Ak Tk(z),
o

(1.3 )

where Tdz) is the Chebyshev polynomial of degree k and where the prime
means that the first term in Eg. (1.3) is to be halved. Let ~t) (j= 1, ..., m)
be the zeros of Tm(x) (i.e., ~)m)=cos[(2j-l)1t/2m],j=I, ...,m), and let
un,m(f; z) denote the algebraic polynomial which minimizes

m

I If(~jm»)- Pn(~)m)W
i~ 1

(1.4 )

over all polynomials PnEIIn- If Sn(f;z)=L'%~oAkTk(Z), then Rivlin
proved

THEOREM B [2]. If fE d(lff(p)) and q is any integer> 1, then

lim (un.m(f; z) - Sn(f; z)) = 0,
n ~ UJ

m=nq+c (1.5)

for all z in lff(p2q- 1), the convergence being uniform and geometric on lff(r)
for r<p2q -l.

In addition, Rivlin also showed that Theorem B is also true if we replace
un,m(f; z) by the polynomial tn,m(f; z) which minimizes

m

I If(rJkm») - Pn(rJkm»)1
2,

k~1

where 1'fkm ) (k= 1, ..., m) are the extrema of Tn(x) on [-1,1].

( 1.6)
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The method of Rivlin is based on the properties of Chebyshev
polynomials and their zeros. This makes a further extension of his results
difficult. Our purpose here is to propose a mixed problem of interpolation
and 12-approximation and to extend Rivlin's result in two directions. As a
special case we obtain "help" functions which give larger regions of
equiconvergence as in [1].

In Section 2 we state the problem and the main results in Theorems 1
and 2. Section 3 deals with the proof of Theorem 1, and the proof of
Theorem 2 is given in Section 4.

2. PRELIMINARIES AND MAIN RESULT

Let A(p) denote the ring {ZEC: p 1< Izi <p}, p> 1, and let d(A(p))
denote the class of functions j which are analytic on A (p) but not on any
region containing the closure of A (p). Let us set

:0

j(z) = L ajzi , ZEA(p). (2.1 )

We shall consider the following two problems:

Problem A. For given jEd (A (p )), find the polynomial Prm + n defined
by

rm+n

-rm n

(2.2)

which satisfies

[P~;;;+n(wk)- j(v)(wk)] =0 (v=o, 1, ...,r-l,k=O, 1, ...,2m-l), (2.3)

where w 2m = 1, and which minimizes
2m-l
I IP~~+n(wk)- pr)(Wk)!2,

k=O

over all polynomials of the form (2.2) which satisfy (2.3).

Problem B. Find the region where the difference

Prm+n(f; z) - Srm+n(f; z)

(2.4 )

(2.5)

tends to zero as n -> 00, when m = nq + c, where c and q are positive integer
constants, and where

rm+n

Srm+n(f; z) = L
-rm-n

is a section of the Laurent series (2.1) of f

azi
J

(2.6)
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The solution to Problem A is given by

THEOREM 1. The polynomial Prm + n(f; z) of the form (2.2) which satisfies
(2.3) and minimizes (2.4) is given by

(2.7)

where

and C R is the oriented boundary of the ring A(R).

We postpone the proof of Theorem 1 to Section 3 and proceed to state
our main result.

THEOREM 2. If fEd(A(p)), f(z)=f(l/z) for all zEA(p) and
Prm + n(f; z) is the solution to Problem A, and if m = nq + c, where n, q, and c
are positive integers, then

lim [Prm+n(f;z)-Srm+n(f;z)] =0,n _ oc,
(2.9)

for all z E A (r(p)), where

r(p) = p2q -l,

= min {p 1 + (2q - 2 )/(qr + 1), pi + 2/(qr - I)},

when r=°
when r ~ 1.

(2.10 )

Moreover, the convergence is uniform and geometric in any compact subset
of the above ring. Also the result is best possible in the sense that (2.9) fails
for every z on the boundary of A(r(p))for somefEd(A(p)).

Remark. Problems A and B can also be formulated and solved in a
similar way if instead of considering the minimization problem (2.4) on the
zeros of z2m = 1, we consider the same problem on the zeros of z2m = -I. In
this case, w k in (2.4) is replaced by w k

- 1/2 and the corresponding
polynomial Prm + n(f; z), which satisfies (2.3) and (2.4) on the zeros of
z2m = -1, is given by

1 f --. f(t) trm+nKdt, z) dt.
2m CR
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Here K1(t, z) is obtained from (2.8) by replacing z2m -1 and 12m - I in
(2.8) by z2m + I and t 2m + 1, respectively. Also, Theorem 2 holds when
Prm+n(f; z) replaces Prm + n(f; z).

When r = 0, Theorem A gives the polynomials 1n.m(f; z) and un,m(f; z) of
Rivlin [2] according as we use the zeros of z2m + 1 or of z2m - 1 respec
tively in (2.3) and (2.4).

3. PROOF OF THEOREM 1

Since Prm + n(f; z) is of the form (2.2) and satisfies (2.3), we have

zrm+nPrm+n(f; z) = Q2rm~ I(Z) + (z2m -1 r R 2n(z), (3.1)

where R2n(Z)EJl21l' From (2.3), we require that

[Q ( ) - rm- n](v) !(v)()
2nn-l Z Z ::=ll)J.; = W k (v = 0, 1, ..., r - 1, k = 0, 1, ..., 2m - I ).

Equivalently, we require

Q (,.) _ (wk)= [zrm+n((z)](V) .
2mr I . - Z = (JJk

From a known formula [1], we have

_ 1 f !(t)t'm+n{ (z2m_ 1)r}
Q2mr~I(Z)--2. t 1- ~1 dt.

m CR -z t -

In order to find P~~ +n(0/), we need to evaluate

(3.2)

A I := [Q2rm ~ 1(Z) Z
rm-n](v)

(Ii and

Since

it is easy to see that

[ drr (z2m -1 rJ .= r!(2m)' w - kr
dz ",!

(k=0,1, ...,2m-l). (3.3)

Also from (3.1) and (3.2), we have
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From (3.3) and (3.4), the problem of minimizing (2.4) reduces to mini
mizing

2rn - 1

L IRzn(wk) - g(wkW
k~O

over all polynomials R 2n E n 2n , where

1 f(t) trm + n
g(z) = 2ni tR (tZm _ 1)'( t _ z) dt.

(3.5)

(3.6)

In order to minimize (3.5), we replace g(z) by its Lagrange interpolant on
the 2m roots of unity and use a result of Rivlin [2]. Accordingly, the
Lagrange interpolant of g(z) is

1 f(t)t rm +n(tZm_ z 2m)
L 2m - I (Z;g)=2nitR (t2m_l)r+l(t-z) dt.

If SZn(z; L zm _ d denotes the Taylor polynomial of degree 2n for
L zm _ 1(z; g), the result of Rivlin yields

Rzn(z) = SZn(z; L zm _ 1(z; g))

1 f f(t)tmr+2m-n-l(t2n+l_z2n+l)
=- dt

2ni CR (tZm - 1Y+ 1(t - z) .

The formula (2.7) is obtained now on using (3.1), (3.2), and (3.6).

COROLLARY 1. If fEs/(A(p)) and if moreover f(z)=f(z-I) for all
z E A(p), then

~rm+np (fz)=_1 f f(t){trm+n+IK (t z)
"' rm +n' 2ni r t I ,

(
1) rm + n + 1 ( 1 )}- - K , - z dt
t t"

where r is the circle Izi = R, 1 < R < p.

(3.7)

(3.8 )

Proof Since CR is the union of the circles Izi = Rand Izi = R -1, a
change of variable in the integral on Izi = R -1 gives the result after an
elementary calculation, because f(t) = f( t - I).

Remark. We remark that when r = 0, Pn(f; z) is the polynomial
tnm(z;f) of Rivlin [2].

.Also from (2.6), we see that if f( t) = f( t - 1), then

rm + ns (f·) 1 f f( t) K ( ) dz rm+n' Z =-2' - 0 t, z t,m r t



RIVLIN'S THEOREM ON WALSH EQUICONVERGENCE 345

where

(

z)rm+n zrm+n+ 1_ (m+n+ 1 1 zrm+n _ (l/tym+n
K(t z)- - +-
0' - t z-t t z-(l/t)

This follows also from the representation of f(z), viz.,

1 ff(t)[ t t-
I Jf(z)=-. - -----1- dt,

2m r t t - z t - z

when f(z) = f(z I).

(3.9)

(3.10)

COROLLARY 2. If fE,~(A(p)) and if moreover f(z)=f(z-I) for all
Z E A(p), then

Prm + n(f; z) = Prm + n(f; Z - I ).

Proof From (2.7) and (2.8), we have

1 f(t) (m + n
zrm + nP (f z) = - f

rm + n' 2ni CR t - z

[
(z2m - 1)(1- t2m - 2n - 1z2n + I)J

x 1+ (t 2m _l)'+1 dt

and

(3. I I )

(
~)rm+n . _-I __1 f f(t) trm +n

Prm+n(f;", )-2' t -Iz m ~ -z

[
(l_z2m)'z-2mr( t2m-2n-I)]

x 1+ (t 2m _ 1)'+ 1 1- z2n+ 1 dt.

Changing t into t - I in the above and simplifying, we have

From these we obtain after simplifying that

_ 1 f(t) [(t)rm+n (z)rm+n]
Prm+n(f;z)-Prm+n(f;z 1)=2nifcR t - z -; - t dt=O,

because the integrand is single-valued analytic in the annulus CR'
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4. SOME LEMMAS AND PROOF OF THEOREM 2

The proof of Theorem 2 will require a number of estimates and to this
effect we prove

LEMMA 1. If f(z) satisfies the conditions of Theorem 2, then we have

1 f f(t)
Prm+n(f;z)-Srm+n(f;z)=-2' -A(t,z)dt,

nz r t

where A(t, z) is given by

(4.1 )

and
(t2mr+ 2n + 1_ z2mr+ 2n + I)

SI(t, z) = - (t _ z)(tzym+n '

tmr +n+1{(t 2m -1 y - (z2m -1n
S2(t, z)= (t 2m _1)'(t_z)zrm+n '

(z2m_l)' tmr+2m-n(t2n+l_z2n+l)

5 3(t, z) = (t2m _1)r+ I(t -z) zrm+n

(4.3 )

Proof These formulae are obtained from (3.7) and (3.8) and on adding
the integral

1 f f(t){zrm+n_trm+n 1zrm+n_(1ftrm+n}
- - +- dt
2ni r t t - z t z - t - 1

to the right side of (3.7), since it is easily seen to be zero whenf(t) = f(1ft).

LEMMA 2. The following identity holds:

(12m - 1r - (z2m - 1)r

t-z

where Ak(t) is a polynomial such that

2mr- 1

L Zkt-k-1Ak(t),
k~O

(4.4)

A 2mv(l) = A 2mv + 1(I) = .. , = A 2m(v + I) -I (I)

= (t 2m
- 1r - ±(- 1r- J (~) t2m

;

J~O J

= ± (_1r-J(r.)t2mJ (v=O,1, ...,r-1). (4.5)
;~v+1 J



RIVLIN'S THEOREM ON WALSH EQUICONVERGENCE 347

This is easily verified. When r=O, Ak(t)'s are all zero, and when r= I,
Ak(t) = t2m.

LEMMA 3. If we set

mr+n

.1(t, z) = LAP) zi,
i =--mr - n

(4.6)

then A) t) = A.i t), j = 1, 2, ..., rm + n, and for 1 t 1 = R (l < R < p), we have

) -(t)=O(R mr-n-I)
'1.11 '

= O(R-mr-2m+n),

m(r-2A-2)+n+ 1< Ijl <m(r-2A)-n-l

max(O, m(r - 2A) - n) < 1 jl <m(r - 2A) + n.

(4.7)

The proof of this lemma depends on Lemma 2 and (4.3). The estimates
(4.7) can be used to prove Theorem 2, but we provide here a simple proof.

Proof of Theorem 2. Set A := SI(t, z) + S2(t, z) + S3(t, z). Then from
(4.3) we obtain

z",,+n+1 (1_z-2my zmr-n (_I+z 2n +l t2m-2n-l)
A = - ---.----,--,- -,,,..--,...,,.-----.-'------.,----.,-------U- z) tmr + n (l - t - 2m y + I tmr + 2m n- I (t - Z)

I [zmr+n+l zmr-n(l_z-2my
--- +---;-:;"--'-----;-:-:--.,----.---:-::-;-;-- t - z tmr + n tmr + 2m - n·· I (I _ t - 2m y + I

zmr + n+ I (I - Z 2m y J
tmr +n (1- t- 2m y+ 1

I [zmr+n+1
=_ {O(Z-2m) + OU- 2m )}

t - z fmr+n

+ Zmr-n {I + O(Z-2m) + O(t-2m)}]
tmr + 2m -- n - 1 '

where we may assume without loss of generality that Izi > I, ItI> l.
Moreover, we observe that if we set B:= SI(l/t, z) + S3(1/t, z), then using
(4.3) again we see that

(z2m_IY t-mr-2m+nu-2n-l_z2n+l)
+---.----,--,------:-------U- 2m_I)r+ 1 U- I - z) zmr+n
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Some simplification yields

DIKSHIT ET AL.

1[I (l)r mr-- n
B=-- _ - z (1 +O(z-zm)+o(r Zm ))

1- tz (tz)'m+n tmr +n

( - 1Y t
mr

+ II + I 1+ - (1 + 0(z-2m) + 0(t- 2m )) .tmr+ Zm-n-l

From the above estimates for A and B we see that as n ~ Cf.),

(
zmr+n) (zmr-n)

A = 0 tmr + II + 2m + 0 tmr + 2m - II - 1

and

(
zmr--II) (zmr+n+ I )

B = 0 tmr + II + 0 tmr + Zm - II - 1 •

Thus we have

'(Zmr--") (zmr+II+1)
A(t,z)=O tmr +n +0 tmr +2m m-l'

which tends to zero if

Izi < min {p(mr + 1I1/(mr - "l, p(mr+ Zm- n- 1l/(mr + II + I)}.

(4.8)

This gives the result when n~ Cf.) and completes the proof for r> 1.

For r=O, 5 2(/,z) and 5z(1/t,z) do not occur and the estimate in
Theorem 2 is easily obtained from (4.8), since in this case A (I, z) =
0(z"+I/t2m-I-I).

Remark. For r=O, the polynomial P,,(z) in Theorem 1 can be easily
seen to be the polynomial tll,m(n)(z, f) of Rivlin [2]. In fact we can see from
(2.7) and (2.8) that

", 1 (t 2m - i - 1 t i --
I )

p,Jz) = III,m(II)(z,J) = j~O Ti z ) 21tit f (t) tZm_l + t2m_l dl.

U we set
n

Sn,v(z,f)= I' (A2vm+j+A2vm-j) Ti z )
j=O

where f(z) is given by (1.3), then

(v= 1, 2, 3, ... ),

v = 1

/-- 1

lim In,m(z;f)-sn(z;f)- L SII,V(Z;f)=O
II~W

(4.9)
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Theorems I and 2 can be formulated for functions in d(A(p)) and an
analogue of (4.9) can also be obtained from the representation (4.1).

It would be interesting to obtain sharpness results analogous to those of
Saff and Varga [3] and the analogue of Theorem 2 above when Hermite
interpolation is replaced by lacunary interpolation as in [6].
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